Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions.

نویسندگان

  • Jennifer Vandiver
  • Delphine Dean
  • Nelesh Patel
  • Claudia Botelho
  • Serena Best
  • José D Santos
  • Maria A Lopes
  • William Bonfield
  • Christine Ortiz
چکیده

The normal intersurface forces between nanosized probe tips functionalized with COO(-)-terminated alkanethiol self-assembling monolayers and dense, polycrystalline silicon-substituted synthetic hydroxyapatite (SiHA) and phase pure hydroxyapatite (HA) were measured via a nanomechanical technique called chemically specific high-resolution force spectroscopy. A significantly larger van der Waals interaction was observed for the SiHA compared to HA; Hamaker constants (A) were found to be A(SiHA) = 35 +/- 27 zJ and A(HA) = 13 +/- 12 zJ. Using the Derjaguin-Landau-Verwey-Overbeek approximation, which assumes linear additivity of the electrostatic double layer and van der Waals components, and the nonlinear Poisson-Boltzmann surface charge model for electrostatic double-layer forces, the surface charge per unit area, sigma (C/m(2)), was calculated as a function of position for specific nanosized areas within individual grains. SiHA was observed to be more negatively charged than HA with sigma(SiHA) = -0.024 +/- 0.013 C/m(2), two times greater than sigma(HA) = -0.011 +/- 0.006 C/m(2). Additionally, SiHA was found to have increased surface adhesion (0.7 +/- 0.3 nN) compared to HA (0.5 +/- 0.3 nN). The characterization of the nanoscale variations in surface forces of SiHA and HA will enable an improved understanding of the initial stages of bone-biomaterial bonding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.

Using atomic force microscopy (AFM), supported by semicontinuum numerical simulations, we determine the effect of tip-subsurface van der Waals interactions on nanoscale friction and adhesion for suspended and silicon dioxide supported graphene of varying thickness. While pull-off force measurements reveal no layer number dependence for supported graphene, suspended graphene exhibits an increase...

متن کامل

Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis.

The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple the...

متن کامل

ONE-DIMENSIONAL TREATMENT OF HYDROGEN BOND PART1 THE CASE OF THE LINEAR HYDROGENBOND

The one-dimensional model of Lippincott and Schroeder for hydrogen bond has Been re-examined and it has been shown that O-H bond distance depends on repulsive van der Waals and attractive electrostatic potentials.it has been shown that constant b in the van der Waals repulsion potential is not transferable to all hydrogen bonds. The possibility of obtaining the semi-empircal parameters i...

متن کامل

CFD-DEM Investigation on van der Waals Force in Gas-Solid Bubbling Fluidized Beds

Effect of interparticle force on the hydrodynamics of gas-solid fluidized beds was investigated using the combined method of computational fluid dynamics and discrete element method (CFD-DEM). The cohesive force between particles was considered to follow the van der Waals equation form. The model was validated by experimental results from literature in terms of bed voidage distribution and Eule...

متن کامل

Determination of the Second Virial Coefficient for Binary Mixtures of Ar with CH4 and CO using Van der Waals and Dieterici Models

In this paper, we calculate the second virial coefficient for binary mixtures of Ar with CH4 and CO in order to evaluate the performance of equations of state (EOSs). The investigated EOSs are van der Waals (vdW), Redlich-Kwong (RK), Peng-Robinson (PR), Carnahan-Starling–van der Waals (CS-vdW) and Guggenheim-van der Waals (G-vdW) based on van der Waals model. In our work, we also use Dieterici ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 78 2  شماره 

صفحات  -

تاریخ انتشار 2006